Elementary Landscape Decomposition of the Hamiltonian Path Optimization Problem,
نویسندگان
چکیده
There exist local search landscapes where the evaluation function is an eigenfunction of the graph Laplacian that corresponds to the neighborhood structure of the search space. Problems that display this structure are called “Elementary Landscapes” and they have a number of special mathematical properties. The problems that are not elementary landscapes can be decomposed in a sum of elementary ones. This sum is called the elementary landscape decomposition of the problem. In this paper, we provide the elementary landscape decomposition for the Hamiltonian Path Optimization Problem under two different neighborhoods.
منابع مشابه
Finding the Shortest Hamiltonian Path for Iranian Cities Using Hybrid Simulated Annealing and Ant Colony Optimization Algorithms
The traveling salesman problem is a well-known and important combinatorial optimization problem. The goal of this problem is to find the shortest Hamiltonian path that visits each city in a given list exactly once and then returns to the starting city. In this paper, for the first time, the shortest Hamiltonian path is achieved for 1071 Iranian cities. For solving this large-scale problem, tw...
متن کاملElementary landscape decomposition of the 0-1 unconstrained quadratic optimization
Landscapes’ theory provides a formal framework in which combinatorial optimization problems can be theoretically characterized as a sum of a especial kind of landscape called elementary landscape. The elementary landscape decomposition of a combinatorial optimization problem is a useful tool for understanding the problem. Such decomposition provides an additional knowledge on the problem that c...
متن کاملA Methodology to Find the Elementary Landscape Decomposition of Combinatorial Optimization Problems
A small number of combinatorial optimization problems have search spaces that correspond to elementary landscapes, where the objective function f is an eigenfunction of the Laplacian that describes the neighborhood structure of the search space. Many problems are not elementary; however, the objective function of a combinatorial optimization problem can always be expressed as a superposition of...
متن کاملExact Computation of the Fitness-Distance Correlation for Pseudoboolean Functions with One Global Optimum
Landscape theory provides a formal framework in which combinatorial optimization problems can be theoretically characterized as a sum of a special kind of landscapes called elementary landscapes. The decomposition of the objective function of a problem into its elementary components can be exploited to compute summary statistics. We present closed-form expressions for the fitness-distance corre...
متن کاملElementary landscape decomposition of the frequency assignment problem
The Frequency Assignment Problem (FAP) is an important problem that arises in the design of radio networks, when a channel has to be assigned to each transceiver of the network. This problem is a generalization of the graph coloring problem. In this paper we study a general version of the FAP that can include adjacent frequency constraints. Using concepts from landscapes’ theory, we prove that ...
متن کامل